

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

American Lab

85 Saratoga Avenue, #130 Santa Clara, CA 95051

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 27 July 2024 Certificate Number: AC-1468

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002)

American Lab

85 Saratoga Avenue, #130 Santa Clara, CA 95051 Ken Silva 408-997-8911

CALIBRATION

Valid to: July 27, 2024 Certificate Number: AC-1468

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Measure 1,2	(6 to 600) V	0.36 % of reading + 80 mV	Fluke 179 True RMS Digital Multimeter
AC Voltage – Measure 1,2	(45 to 500) Hz (6 to 600) V 500 Hz to 1 kHz (600 to 1 000) V	1.2 % of reading + 50 mV 2.3 % of reading + 3.5 V	Fluke 179 True RMS Digital Multimeter
DC Current – Measure 1,2	(60 to 400) mA	1.9 % of reading + 0.4 mA	Fluke 179 True RMS Digital Multimeter
AC Current – Measure 1,2	45 Hz to 1 kHz (60 to 400) mA	1.2 % of reading + 3.2 mA	Fluke 179 True RMS Digital Multimeter

Length – Dimensional Metrology

Version 011 Issued: July 31, 2023

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bench Micrometer ³	Up to 10 in	(71 + 0.7 <i>L</i>) μin	Gage Blocks
Dial/Digital Calipers ¹ (ID, OD, Depth)	Up to 24 in	150 μin	Gage Blocks, Micrometer Standards (1 to 11) in

ANSI National Accreditation Board

Length – Dimensional Metrology

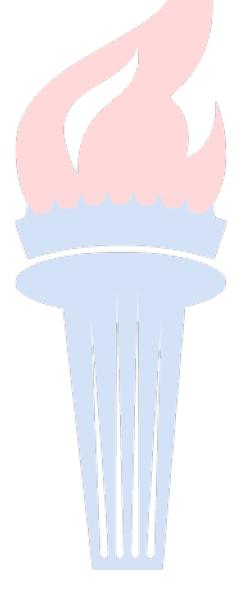
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Height Gages/Height Master ¹ (Various Types)	Up to 24 in	(17 + 0.4L) μin	Gage Blocks, Micrometer Standards (1 to 11) in
Dial/Test Indicators ¹	Up to 4 in	80 µin	Gage Blocks
Dial/Digital Micrometers ^{1,3} (Blade, Depth, Flange, Micrometer Head, ID, OD)	Up to 12 in	(65 + 23 <i>L</i>) μin	Gage Blocks, Micrometer Standards (1 to 11) in
Micrometer Standards ³	(1 to 11) in	(71 + 1.2 <i>L</i>) μin	P & W Super-micrometer, Gage Blocks
Pitch Diameter/External Threads ¹	Up to 4 in	60 μin	P & W Super-micrometer, Thread Wires
Gage Blocks ³	(0.05 to 1) in (1 to 4) in	$(13 + 0.9L) \mu in$ $(71 + 0.3L) \mu in$	P & W Super-micrometer, Master Gage Blocks

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Devices ¹	20 g to 7 000 g	0.04 % of reading + 4.6 mg	Class F Weights
Force – Measure ¹ (Tension and Compression)	Up to 440 lbf	1 % of reading + 0.2 lbf	Digital Force Gage
Torque Tools ¹	(5 to 50) lbf·in	6 % of reading + 0.11 lbf·in	CDI Torque Tester
Scales and Balances 1,4	Up to 2 000 g	0.2 % of reading + 0.6 g	NIST Class F Weights and internal procedure #045 utilized for the calibration of the weighing system.

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Measure ¹	(-40 to 500) °F	0.3 % of reading + 2.4 °C	Fluke 52 II Digital Thermocouple Thermometer, Type K Thermocouple Probe


Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. Uncertainties for Electrical-DC/Low Frequency do not include possible contributions to uncertainty from a "best available" unit under test.
- 3. L = length in inches.
- 4. The CMC for Scales and Balances is highly dependent upon the resolution of the device under test (DUT). The CMC expressed here does not contain does not contain the resolution of the DUT. The resolution will be included in the measurement uncertainty at the time of calibration.
- 5. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1468.

Jason Stine, Vice President

Version 011 Issued: July 31, 2023

